From Chapter 1 of Category Theory for Scientists by David Spivak (2013):
... I believe that the language and toolset of category theory can be useful throughout science. We build scientific understanding by developing models, and category theory is the study of basic conceptual building blocks and how they cleanly fit together to make such models. Certain structures and conceptual frameworks show up again and again in our understanding of reality. No one would dispute that vector spaces are ubiquitous. But so are hierarchies, symmetries, actions of agents on objects, data models, global behavior emerging as the aggregate of local behavior, self-similarity, and the effect of methodological context.
Some ideas are so common that our use of them goes virtually undetected, such as set-theoretic intersections. For example, when we speak of a material that is both lightweight and ductile, we are intersecting two sets. But what is the use of even mentioning this set-theoretic fact? The answer is that when we formalize our ideas, our understanding is almost always clarified. Our ability to communicate with others is enhanced, and the possibility for developing new insights expands. And if we are ever to get to the point that we can input our ideas into computers, we will need to be able to formalize these ideas first.
It is my hope that this course will offer scientists a new vocabulary in which to think and communicate, and a new pipeline to the vast array of theorems that exist and are considered immensely powerful within mathematics. These theorems have not made their way out into the world of science, but they are directly applicable there. Hierarchies are partial orders, symmetries are group elements, data models are categories, agent actions are monoid actions, local-to-global principles are sheaves, self-similarity is modeled by operads, context can be modeled by monads. ...
(cf Greatest Inventions (2011-06-09), Category Theory Concepts (2016-04-25), Ultimate Abstraction (2017-08-24), Why Care about Category Theory (2019-03-03), Yoneda Perspective (2018-10-03), ...) - ^z - 2019-11-05